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Note 

A New Iterative Method for Solution of 

a Large-Scale General Eigenvalue Problem 

The Unite-element method is a powerful tool for numerical analysis of an oscillation 
of a geometrically or physically complicated object such as an analysis of MHD 
spectra of a cylindrical or toroidal plasma [l-3]. This analysis requires the solution of 
a large-scale general eigenvalue problem of matrices, AX = hBX, where matrices A 
and B are assembled from coefficients of bilinear forms of plasma displacements 
corresponding to the potential and kinetic energies, respectively. Matrix A is real 
symmetric or Hermitian, and matrix B is positive definite; moreover, as a consequence 
of the finite-element formulation they are sparse band matrices. 

Many kinds of algorithms for solving a standard eigenvalue problem, i.e., AX = hx, 
are now available [4]. Especially if the matrix A is a sparse band matrix, the eigenvalue 
problem of a very large matrix, e.g., several thousand to several ten thousand dimen- 
sional, can be solved. However, there are only a small number of available algorithms 
for the calculation of a general eigenvalue problem of large-scale matrices. One of 
the most important things to be noted in solving a large-scale problem is that one 
should conserve the sparseness of the matrices during the course of the calculation. 
From this point of view, inverse power methods [5-71 and power methods [8] are 
considered to be the most favorable methods for solving a general eigenvalue problem. 

Here we present a new iterative method for solving the problem, by which we reduce 
the general to a standard eigenvalue problem without destroying the band structure 
of the matrices and then we obtain the arbitrary eigenvalue by using an appropriate 
algorithm for the calculation of the standard eigenvalue problem. This method 
concerns only the procedure of converting a general to a standard eigenvalue problem, 
and it will manifest its effectiveness if one can use a most appropriate algorithm to solve 
the standard eigenvalue problem for each general eigenvalue problem considered. 

When one wishes to solve a large-scale eigenvalue problem it is often the case that 
only a small number of eigenvalues and eigenvectors are necessary. If the jth eigen- 
value (A$, j = 1, 2 ,..., N) and the corresponding eigenvector (Xi, j = 1,2,..., N) of the 
general eigenvalue problem (AX = XBX) of N x N matrices A and B are required, 
they will be obtained according to the following procedure. 

(1) Prepare an arbitrary initial value (AR for the jth eigenvalue (Xj). 

(2) In the nth step of the iteration scheme, shift the eigenvalue by h,j; then the 
problem is reduced to 

U,jX,j = (Aj - X,i)BX,j, (1) 
where 

Unj = A - h,jB. (2) 
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(3) Approximate the above general eigenvalue problem (Eq. (1)) by the 
standard eigenvalue problem 

and solve it. 
u,,jX,j = AX,X,j (3) 

(4) If the jth eigenvalue A&j of the above standard eigenvalue problem is 
sufficiently small, i.e., 1 dX,j l/j &i 1 < E, then stop the iteration and calculate the 
corresponding eigenvector (Xnj). 

(5) Calculate a new eigenvalue hT+l = h,j + A&j for the next step and return 
to process (2). 

By using an appropriate algorithm for the solution of the standard eigenvalue 
problem in process (3) one can keep the bandwidth of the relevant matrices constant 
throughout the above procedure. 

For practical use we normalize the eigenvalue so that the norm of matrix B is 
nearly unity, and then we accelerate the convergence of the iteration. In our procedure 
we normalize the eigenvalues by the factor /I = NE:, I Bii 1, instead of calculating 
the norm of matrix B exactly, and reduce the eigenvalue problem to 

AX = XBX, (4) 

where x = h/p, and B = j?B. Then an accelerating coefficient wnj is introduced which 
is multiplied to A&j in each step of the iteration, and the equation of process (5) is 
replaced by 

-. 
Xifl = xni + w,j Ax,! (5) 

The value of the accelerating coefficient w  nj is asymptotically determined by the ratio 
of Rayleigh quotients of Eqs. (1) and (3) as 
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where Xi is thejth eigenvector of the original problem. Obvioulsy the above asymptotic 
accelerating coefficient can be calculated only after the convergence of the iteration 
and, therefore, we cannot determine the value of the accelerating coefficient from 
Eq. (6) for practical purposes. We adopt the values determined according to the 
following empirically derived rule. 

(1) When the sequence of eigenvalues is monotonic in the vicinity of the nth 
step of the iteration,l that is, h,j < Xj,-, < Xj,-, or h,j > & > Xj,-, , 

wn j = 2&, ) for wj,-, < 5, 
(7) 

= 10, for win-, > 5. 

1 As we prove below, the sequence of the eigenvalues monotonically increases if the iteration is not 
acceIerated. But by the acceleration the monotonicity is destroyed, and the sequence can become 
oscillatory locally. 
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(2) When the sequence of eigenvalues is oscillatory in the vicinity of the nth 
step of the iteration, that is, Ai,-1 -C h,,j -=c Xi-, or hi-, > X,j > hj,-, , 

an i = “jn-$l, for ai,-, > 4, 
(8) 

zzz 1, for win-, < 4. 

By means of the above rule the iteration is accelerated sufficiently, as shown below. 
In order to prove the convergence of the procedure we consider the following 

situation: (1) A is real symmetric or Hermitian, and B is real symmetric; (2) B is a 
positive definite matrix, and 

rnax- < 1. 
x IIXl12 

(9) 

In the following we prove the convergence of the procedure as for the minimum 
eigenvalue (X1).2 It should also be remarked that, for simplicity, the acceleration 
process described above is not taken into account. By the iterative procedure the 
approximate eigenvalue for each step constitutes an infinite sequence (All, h,l,...). 
First, we prove that this sequence is monotonically increasing and uniformly bounded. 
For an arbitrarily chosen scalar 01 which satisfies 01 < #, we define a matrix U, = 
A - aB and represent the minimum eigenvalue of the matrix U, by da, that is, 

dol = min ((A - olB) ” ‘) 

X llXl12 ’ 

Because the vector U,X can be decomposed as 

U,X = (A - aB)X = (A - XlB)X + (xl- a)BX, 

the following inequality is derived, 

dol b min ((A - ‘lB) X, X) + min (X1 - ~)o(BXy X) 

X II x II2 X II XII2 * 

As h1 is the eigenvalue of the problem AX = XBX, and B is positive definite, 

min ((A - ‘lB) X, X) = 0 

X IIXl12 ’ 

(10) 

(11) 

(12) 

(13) 

e The proof is easily generalized for the convergence of the iteration for the other eigenvalues 
by using the following definition for Ax, 

da = min max ((A - 4x Xl 
.!I, XEEj II x la 

0' = 2, 3 ,..., N), 

where Eg is a j-dimensional subspace of the original N-dimensional space. 
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min (Bx, > 0 
x IIw2 . (14) 

Therefore, dol is always positive, and thus a: < 01 + da. Using Eqs. (11) and (13), 
we obtain 

X1 _ (y. = min ((’ - OLB) ” ‘) 

X WC x> * 

From Eqs. (9) and (15) the following inequality is derived. 

Al _ o( > min ((A - aB) ” ‘) = Aa 

X II x II2 

(15) 

Therefore, 01 + dol < h1 for OL < P, that is, the infinite sqeuence (All, h,l,...) is 
monotonically increasing and uniformly bounded. Next, we prove that h1 is the limit 
of the sequence. We assume that the value of the limit is less than P, that is, 

lim h,l = X < X1. n-+m (17) 

Then we substitute /i for 01 in the definition of the matrix U, . As a consequence of 
the above discussion there exists A’ = 01 + Aa > A, which is inconsistent with the 
above assumption (Eq. (17)). Therefore, it is proved that h1 is the limit of the infinite 
sequence (Xll, hZ1,.. .). 

To investigate the accuracy and convergence of the procedure we solved a general 
eigenvalue problem with rather small-scale matrices (N = 41 and the band width = 6), 
which appears in the analysis of the MHD spectra of a current carrying cylindrical 
plasma [l]. In this case eigenvalues represent squared frequencies of the MHD oscil- 
lation, and the growth rate of the instability is given by the square root of the absolute 
value of a negative eigenvalue. Figure 1 shows that oscillations corresponding to the 
three lowest eigenvalues (Nos. 1, 2, and 3) are unstable and that those corresponding 
to the fourth and higher eigenvalues are stable. It is easily seen from this figure that 
results with an accuracy of 1O-3 are attained within several iterations and that the 
stopping criterion (I Ah,j l/l h,,j / < E; E = 10m4) is satisfied within about 10 iterations. 
Another remarkable point of this procedure is that the result is insensitive to the 
initial trial values of the eigenvalue and roughly approximated values are usually 
obtained after the first or second iteration (Fig. 2). In this example three different 
initial trial values are chosen for the lowest eigenvalue, and all the initial trial values 
give almost same results within an accuracy range of 10es at the second step of the 
iteration. 

In summary, there are two remarkable features and some problems to be solved 
in the new algorithms. Namely, 
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-do 
NO. OF ITERATION 

10 20 30 

ld 

1; 
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FIG. 1. An example of a solution of a general eigenvalue problem which appears in an analysis 
of MHD oscillations of a current carrying cylindrical plasma. (a) Eigenvalues corresponding to 
unstable modes. (b) Eigenvalues corresponding to the lowest two stable modes. 
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-llY- 

-Id- 

NO. 1 -w9mrjF - - _ _ _ - _ _ _ _ _. _ 

-1dl , NO. OF ITERATION , 
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FIG. 2. Processes of convergence for different values of initial guesses. 

(1) The band structure or sparseness of the original matrices is conserved 
during the course of reducing the general eigenvalue problem to a standard eigenvalue 
problem. This is one of the most attractive points of the method when one wishes 
to solve a large-scale general eigenvalue problem. 

(2) The results are insensitive to the choice of initial trial values of an eigenvalue, 
and one can reach a desired eigenvalue by always choosing the eigenvalue of the same 
number counted from the lowest eigenvalue at each step of the iteration scheme. 

(3) This procedure works very well for solving a general eigenvalue problem as 
long as a suitable algorithm for a standard eigenvalue problem is available. Therefore, 
it is very important to find a most adequate algorithm for the standard eigenvalue 
problem. 

(4) Problems concerning degenerate eigenvalues have not been studied yet. For 
such problems, the proof of convergence presented in this paper, at least, should be 
reexamined. 
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